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11.1 IMPLEMENTATION DU FILTRAGE

= Filtrage rapide

= Filtrage par bloc; longs signaux

Filtrage rapide

Utilisation de la propriété

Fathx [} (w) = Fa{h}(w) x Fa{f}(w)

Si f est de taille L et h de taille M, alors (h * f)
est de taille L + M — 1.

= calcul de la DFT sur L + M — 1 échantillons

= bourrage de zéros pour atteindre cette taille

zero-padding

m Colt

= convolution temporelle: O(M - L) ops
» FFT: O((M 4+ L—1)logy(M + L—1)) ops
= gain pour M et L suffisamment grands

Unser-Vandergheynst / Sig & Sys Il

flnl
)
I
bourrage de zéros (“zero-padding”)

|
L

E—

|
FFT M+L-1 points
|

Fn]
Hln] |

multiplication

H[n]- F[n]

11-4



Filtrage par bloc; longs signaux

1. Méthode d’addition des recouvrements (“overlap add ”’)

On décompose le signal a filtrer en blocs de taille L:

fln] = Zf[n] Lpo..L—yln—mL], neZ

J/

~~

Fm[n]

.. . | . [ |
. y

fon

Le filtrage de f par un filtre h de taille M peut alors s’exprimer comme une somme
de filtrages par h de blocs de taille L (implémentation FFT)

(h* f)ln] = (A fn)ln]

support =L+M —1 (h*fm)
o L
(hx f)= I I I Pt
—~—
M —1 points
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2. Méthode de sauvegarde et élimination du recouvrement (“overlap save ”)

On décompose le signal a filtrer en blocs de taille L

. .| |
| A ~~ J

sauvegarde fr
des M — 1 derniers
échantillons de fj—1 I

l
N = f(n+ kL — M+ 1ln=o,...L+M-1

| .
convolution cyclique
(utilisation de la FFT)
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11.2 ANALYSE DES FILTRES NUMERIQUES

= Pourquoi filtrer?

= Réponse fréquentielle

= Types de filtres

= Distortions

= Temps de propagation de groupe

= Filtres a phase linéaire



Réponse fréquentielle du systéme LID Sn:f—=hxf

m DTFT de la réponse impulsionnelle h = S;,{d}

H(e) = Faf{h}(w) =) h[nJe "

nez
m Réponse a une sinusoide discrete de fréquence w € (—m, 7]

Sp{el"}[n] = H(e)e" = H(el*) = Sp{el" }0]

m Réponses en amplitude et en phase
H(e%) = A (w) P (W)

Ap(w) =|H(e¥)| €R*
Py (w) =arg(H(e)) € (—m, 7]

avec

NB: amplitude et phase sont des fonctions 27-périodiques de w.
Fonctions MatLab

A=abs (B) calcule le module du vecteur B
A=angle(B) calcule la phase du vecteur de données B
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Pourquoi filtrer?

1) Pour corriger les distorsions analogiques = égalisation

z(t) y(t) yln] Traitement numérique

”
— YT AN —

z[n] = (h*y)[n] = z[n]

2) Pour supprimer le “bruit”

fln] = s[n] + bln] 3[n] = (h* f)[n] = s[n]
/
signal utile [

bruit (souvent aléatoire) §(eJW) _ H(%)S(e") 1 HEe“)B(@*) ~ S()

3) Pour préaccentuer
Tralte,;ment N/A | ‘)))
numeérique

Dans les systemes réels de mesure ou communication: souvent 1) + 2)
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Exemple: filtrage d’un ECG
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Types de filtres

Comme pour les filtres analogiques, on classe les filtres en 4 classes
principales, selon le support de leur DTFT

m Passe-bas - —

=1T T
m Passe-bande l l
T .
m Passe-haut l .
w
=TT T
w
=7T T

Rappel: On ne trace la réponse fréquentielle d’un filtre numérique (ici son am-
plitude) qu’entre —m et m. D’autre part, la réponse impulsionnelle filtres usuels
étant réelle, leur réponse fréquentielle satisfait la symétrie Hermitienne.
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Distorsions

Réponse fréquentielle: H(el¥) = Ay (w)el®u®)

m Distorsion d’amplitude ou atténuation

Mesure de I'écart relatif (expression en décibels) entre 'amplitude du filtre au centre
de la bande passante w. et son amplitude pour des fréquences quelconques

Atty (w) = 20 - logy, <;14H—(((j))>d8

m Distorsion de phase ou temps de propagation de groupe

= Rappel: si h[n| caractérise un filtre numérique, alors la phase de la DTFT de h,,,[n] =
h[n — no| est modifiée linéairementpar: ¢y, (w) = @y (w) —wne mod 27.

= Temps de propagation de groupe: TPGh(w) = —%(I)H(w)

= La distortion de phase est alors I'écart de TP Gy, (w) par rapport a TPGp, (w.).
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Temps de propagation de groupe

m Forme polaire de la réponse fréquentielle

. ) Rappel:
.Fd{h}(u}) :H(e.]w> :AH<w)eJq>H(W) - Z:a+jb:|z|‘ej9
= log(2) = log|2| +j6
d<I>H(w)
TPGh(W) = - dw = Im(log(z)) = Re( —jlog(z)) =6 (mod 2n)

m Formule différentielle pour le temps de propagation de groupe

dH(2)
dz

jw Hl(e]w)
TPGh(OJ) = —Re(eJ W

jw H'(l*)jelv
En effet, @}{(w) = Im(% ]Og(H(eJ ))) _ Im( ;I(ejz;]) ))_

) avec H'(z) =

Exemple: Décalage de ng avec H(z) = z~"°

—no—].
2H'(2) Z(_nO)Z . TP .
H(z) po—— =-no = Gp(w) =no
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Exemple. H(Z) = W avec zg = |z0\eJ e C
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2
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~ -2} R 1=z 1
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s 5 ot ]
= <
g 8
c —6f 2L
2 o)
@© o -1f
-8 =
-10— : : : : -2 : . . .
- —m/2 0 /2 T - —7t/2 0 /2 T
fréquence radiale fréquence radiale

NB: les atténuations et TPG sont des quantités additives par convolution

Atty,, «h, (w) = Attp, (w) + Atty,, (w)
TPGh,«h, (w) = TPGy, (w) + TPGy, (w)
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Filtres a phase linéaire

Un filtre réel sans distortion de phase, c.-a-d. tel que TPGj(w) = K (constante),
est forcément a phase linéaire

H (&) on
TP =K o\ ) G(200—2Kw)
Gp(w) nd= =0 e

(ce qui équivaut "moralement” a ® g (w) = 6y — Kw)

Preuve basée sur la forme différentielle du TPG

Si h est unfiltre réel avec H (el*) = Ay (w)el®# () alors H(e)*)* = H(e %) = Ay (w)e 1®u (),
En appliquant les régles de différentiation, on vérifie que

H(e™)  d (ewH(ejw))_eij,(ejw) eTMH(eT)

2je2KiwH (elw) dw\ H(e iv) T 2H(elw) 2H (e~iw) d [ e2Kiw H(elv)
i@ HY (ei®) A @ H(e—jw) =0
Re H(elw)
= 7TPGH(UJ) + K =0
S H(EY) oenw) —2Kjw R , _
Il s’ensuit que Hie) ~ ¢ = Const - e , ce qui implique aussi que |Const| = 1.
e w

Donc, il existe 6y € R tel que 2P (w) = (260p — 2Kw) mod 2.
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Filtres a phase “constante”

m Filtres symétriques: h[n] = h|—n|,Vn € Z

s H(e?) = A(w) avec A(w) réel, 2m-périodique ett.q. A(w) = A(—w) (symétrie Hermitienne)
H(ev)

m =1; c.a.d. 290 =0et K =0.

m Filtres anti-symétriques: h[n] = —h[—n|,Vn € Z

= H(e)W) = jB(w) avec B(w) réel, 2r-périodique et t.q. B(w) = —B(—w)
H(ev)

m =—1; c.ad 20y =mwetK =0.

m Filtres a phase linéaire réalisables
e s o i . - H(el) iNw
Le filtre réel a phase linéaire est réalisable sous forme rationnelle si ————~ = +e™’

H(e i)
avec N € Z;c.a.d. quand 26, € {0,7} et K = N/2.
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Filtres réalisables a phase linéaire
Condition nécessaire et suffisante pour que H (z) soit réalisable et a phase linéaire

H(z) =ez NH(z71) avec e = &2 € {+1,-1} & TPGL(w)=N/2=K

m Filtres symétriques a phase linéaire: e = +1

Type 1: € = 41, N pair Type 2: € = +1, N impair

m Filtres anti-symétriques a phase linéaire: ¢ = —1

Type 3: ¢ = —1, N pair Type 4: € = —1, N impair
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11.3 SYNTHESE DE FILTRES NUMERIQUES

= Gabarit de filtre

= Synthese a partir d'un filtre analogique
Echantillonnage de la réponse impulsionnelle
Transformation bilinéaire

= Synthese directe de filtres numériques
Placement des pdles et zéros
Critere Lo

Critere de Tchébychev
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Gabarit de filtre

Les filtres idéaux n’étant pas réalisables, il faut faire des compromis
= Fluctuations dans la bande passante (1 & ¢,)

= Zone de transition (largeur A = |w, — wy|)

= Fluctuations dans la bande bloquante (0 + ¢,)

Exemple de spécifications pour un filtre passe-bas

[H(e)]

2¢e ‘ W

a

3

0 w, w, T

bande passante bande bande atténuée
de transition

Remarque: le gabarit d’un filire passe-bas est symétrique de celui d’un filtre
passe-haut par rapport a w = 7/2; H(z) passe-bas < H(—z) passe-haut
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Synthese a partir d’un filtre analogique

Lorsque les signaux discrets sont obtenus par échantillonnage a la fréquence 1/7 de
signaux a temps continu, les filtres discrets peuvent étre également issus de filtres a

temps continu selon la formule (en notant h(w) = / h(t)e 1" dt)
R

w /T
- 1 ) |
= i nl—7 _ (e _ _ T
hln] = /Rh(f)smc( T )d’]’ (h * smc(T)) (nT) 5 / T - h(w)e™Tdw
Preuve: y(t) = (h=*z)(t) —n/T
= * x . sine(=kT
= (h kezz (kT) SIHC( T )) (t) = y(’n,T) = Zx(kT) . /]R h(T)SinC(W)dT
= Z:c(kT) - (b= sinc(=EL) (t) yn] REZ Lk —

kEZ

m Méthode d’échantillonnage de la réponse impulsionnelle

Si I'on peut faire I'approximation que h(t) est a bande limitée dans [—x /T, 7 /T, alors on a
hin] =T - h(nT).

Exemple: h(t) = e~ *0tu(t). Alors h[n] = T - e~*T"u[n] avec H(z) = ;—=5r—.
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Méthode d’approximation de la réponse fréquentielle

Une solution meilleure que I'approximation de la réponse impulsionnelle est d’approcher
la réponse fréquentielle. Soit

1 4 . .
hin] = — H(e)e*"dw
2 J_,
/T e
~ 1 ~ . 1 A .
et hin] = — / T - h(w)e"“dw = — /h(ﬁ/T)eJngdf
2 2m
—7/T -7

Les deux formules sont équivalentes is H (¢/*) = h(w/T) pour |w| < 7.

Donc, une bonne approximation du filtre analogique est une approximation qui
réalise H(el*) ~ h(w/T) pour w € [—m, 7.
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Transformation bilinéaire

On souhaite approcher h(w) & I'aide d'une fonction (27 /T)-périodique H (7).
Méthode: approcher la fréquence w elle-méme a I'aide d’une fonction (27 /T")-périodique.

Transformation bilinéaire:

Justification: e« =1 + jwT + O(w*T?) (série de Taylor), d'ou I'approximation
R LWE

€ - ~ - = .
FTT TR Tt

—s+c 1—2z71
&S s=c—
s+c 14271

Transformation dans le plan complex: z~! avec z = 7 s = jw,c = 2.

La réponse fréquentielle qui approche la transformée de Fourier du filtre est donc donnée par

: ~f 21 —e T
aninéaire(ew) = h( —>

JT 1+ e—iT

m Propriété: Conservation de la stabilité

h(w) est une fraction rationnelle en jw et le filtre continu est stable BIBO

)

Hbilinaire(ejw> est une fraction rationnelle en el et le filtre discret est stable BIBO
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Approximations du filtre: h(t) = e~ tu(¢)
— h(w)
——— approximation bilinéaire
——— approximation impulsionnelle

2 .l
[ Qo
2 =
[0}
& o8 =
S C
S g
;G,__J 0.6t o
© 2
o 0.4} "q_)
= @
002 <
e o
CU 1 1 1 . L 1
-10 | 0 . 10 -10 | 0 .
fréquence radiale fréquence radiale

La transformation bilinéaire permet de recycler toutes les classes de filtres
analogiques (Butterworth, Tchebychev etc...) en des filtres numériques.
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Synthése directe de filtres numériques

Le traiteur de signal moderne est confronté le plus frequemment a des signaux
numeériques purs, sans nécessité de recourir a I'équivalence analogique.

Selon le sens que I'on donne au verbe “minimiser”, plusieurs techniques existent alors
pour synthétiser des filtres, le but étant toujours

= de minimiser 'amplitude de la réponse dans la bande atténuée

= de limiter la distortion dans la bande passante

= de rendre la bande de transition la plus étroite possible

On peut ainsi forcer le filtre a avoir un gain minimal—ou au contraire,
maximal—pour certaines valeurs de la fréquence w (placement de péles et de zéros).

Dans le cas de la synthése de filtres FIR, on peut simplement tronquer le filtre
idéal ou plus généralement, le multiplier par une fenétre a support fini.

On peut aussi minimiser le carré de I'erreur moyenne entre le filtre et son gabarit
(critére L2); ou bien minimiser le maximum de I'erreur moyenne entre le filtre et son
gabarit (critére de Tchébychev).
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Synthese par placement des poles et zéros

Comme dans le cas analogique, les zéros et les péles d’un filtre RIl permettent de
spécifier la bande passante et |la bande atténuée. Ainsi, soit la fonction de transfert

On obtient la réponse fréquentielle en évaluant H(z) pour z = ¢/*; son amplitude est

donnée par o 2
[T (distance de zg,,, & e/*)
jwy . m=1
[1 (distance de z; , & &)
n=1
0_
zéro — effet attractif
pole — effet répulsif -1r
K 0 1 2
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Pour ce qui est du TPG du filtre, on a (additivité des TPG)

M N
TPGh(w) = Y TPG(_sy,.-1(w) = Y TPG_s, ,.-1)(w)
m=1 n=1

ou TPG(l_Zkz—l)(W) = —Re (ﬂ) avec zi = |Zk|ej¢k

1—zpe v

Lextremum du TPG d’un filire élémentaire 1 — 2,2~ ! est atteint pour wi, = ¢ et on a
TPG(1—2,.-1)(wk) = — 25 < 0'si[2] < 1. Donc
= quand |z, | < 1 (filtre causal-stable), le TPG maximum de l_zp# est positif
— retard de groupe

= quand |zo | < 1, le TPG maximum de 1 — zp 2" est négatif
— contrebalancer le retard de groupe di aux pbles

m Enrésumé
= filtre a Rl réelle = pbles et zéros complexes par paires conjuguées
= filtre causal-stable =- péles a I'intérieur du cercle unite

= filtre a2 phase linéaire (FIR) = zéros par paires réciproques
P(z) =42"NP(z7Y): P(z)=0= P(z,') =0
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Filtres passe-tout

Pour que la réponse d’amplitude d’un filtre H (/) soit constante, il faut que la distortion
d’amplitude des zéros compense exactement celle des péles; soit | H (e/“)|? = H(2)H* (27 1)] ,—ejw
= ~? = Const. Un tel filtre passe-tout est nécessairement de la forme

_ N P(z)
H(z) =~ )

ol P(z) estun polynéme en z~1, et P*(2) est le polynéme obtenu en prenant le complexe
conjugué des coefficients de P(z).

Preuve: posons H(z) = P(z)/Q(z), alors la condition passe-tout équivauta P(z) P*(z7!) o Q(2)Q* (27 1).
Comme Q(z) ne divise pas (est premier avec) P(z), on en déduit que Q(z) = vz¥ P* (27 1).

Caractérisation équivalente: H(z) est un filtre passe-tout si est seulement si a tout zéro

20,m correspond un pole z, ,, = 1/z¢ ,, et vice versa.

Vérification: La distance de 1/z; ,,, a e/ peut s’écrire comme

1

%
)

B 1 . .
[ =7 - ;\ = (io:) (20,m — €)]
,m

o _

s,

1 . _ .
= — e/ — 29| o distance de zg ,,, a /¥
0, 0,
|20,m|
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Synthese de filtres RIF—Critere L>
On choisit la mesure (quadratique) suivante

E(H) = / ‘1—H(ej“’)‘2dw+ / ’O—H(ej“’)‘Zdw

bande passante bande atténuée

Plus ce nombre est proche de 0, plus le filire H est proche du filtre idéal. Par contre,
certains points fréquentiels peuvent ne pas tendre vers zéro (effet de Gibbs). On
limite ce phénomene en autorisant une plus grande bande de transition.

Lavantage de la mesure L5 est que le minimum est unique, et solution d’'un systéme
linéaire d’équations. Exemple de résultat: Gibbs

Fonction Matlab
H=firls(N,F,A)
0.8f
— H=filtre symétrique de degré N (support N+1) -
F=bandes de fréquences normalisée (début-fin); =z, 0-6f

eg.. = [O w, 0, n]/n ay o4l
A=amplitude dans les bandes -
eg.:=[1100] 0.2t

] -7 —71/2 0 /2 T
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Synthese de filtres RIF—Critere de Tchébychev

On choisit la mesure (Tchébychev ou minimax) suivante

E(H) :max< sup ‘1—H(ej°")|, sup ‘OH(ejw)|>

bande passante bande atténuée

Plus ce nombre est proche de 0, plus le filtre est proche du filtre idéal. A la différence
du critére Lo, il n’y a pas d’effet de Gibbs.

Un algorithme itératif trés efficace di a Parks et McLellan permet de calculer le filtre
minimisant ce critere: l'algorithme d’échange de Remez. Le résultat est un filtre a
ondulation uniforme (equiripple). Exemple de résultat:

Fonction Matlab I AV AvAY:
H=remez (N,F,A) 08
— H=filtre symétrique de degré N (support N+1) 3:
F=bandes de fréquences normalisée (début-fin); =, 06
. — R
e.g.: =[O w, 0, JT]/JT s 0.4l e“\qo
A=amplitude dans les bandes -
e.g..=[110 0] 02l

-7 0
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