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11.1 IMPLÉMENTATION DU FILTRAGE

◼Filtrage rapide

◼Filtrage par bloc; longs signaux

3
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Filtrage rapide

Lf [n]

Mh[n]

M-1L

L-1M

FFT M+L-1 points

L+M-1

L+M-1

multiplication

L+M-1

FFT-1

L+M-1

bourrage de zéros (“zero-padding”)

F[n]

H[n]

H[n] ⋅ F[n]

h ∗ f( )[n]
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Si f est de taille L et h de taille M , alors (h ∗ f)
est de taille L+M − 1.

⇒ calcul de la DFT sur L+M − 1 échantillons

⇒ bourrage de zéros︸ ︷︷ ︸
zero-padding

pour atteindre cette taille

Utilisation de la propriété

Fd{h ∗ f}(ω) = Fd{h}(ω)×Fd{f}(ω)

Coût

convolution temporelle: O(M · L) ops

FFT: O
(
(M +L−1) log2(M +L−1)

)
ops

⇒ gain pour M et L suffisamment grands
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Filtrage par bloc; longs signaux

L L L

L+M-1

L+M-1 L+M-1

+ + + +
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1. Méthode d’addition des recouvrements (“overlap add ”) 

︸︷︷︸
M−1 points

f ︸ ︷︷ ︸
fm

On décompose le signal à filtrer en blocs de taille L:

f [n] =
∑
m

f [n] · [0...L−1][n−mL]︸ ︷︷ ︸
fm[n]

, n ∈ Z

Le filtrage de f par un filtre h de taille M peut alors s’exprimer comme une somme

de filtrages par h de blocs de taille L (implémentation FFT)

(h ∗ f)[n] =
∑
m

(h ∗ fm)[n]︸ ︷︷ ︸
support =L+M−1

(h ∗ f) =

(h∗fm)︷ ︸︸ ︷
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f

h ∗ f

h ∗ f1

h ∗ f2

∑
m

h ∗ fm
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L L L

LM-1

L+M-1

convolution cyclique  
(utilisation de la FFT)

LM-1X
élimination du recouvrement

︸ ︷︷ ︸
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2. Méthode de sauvegarde et élimination du recouvrement (“overlap save ”)

On décompose le signal à filtrer en blocs de taille L

f ︸ ︷︷ ︸
fksauvegarde

des M − 1 derniers
échantillons de fk−1

= f [n+ kL−M + 1]|n=0,...,L+M−1

=

M−1∑
m=0

h[m] · f[kL−M + 1 +
(
n−m mod (L+M − 1)

)]|n=0,...,L+M−1

=

M−1∑
m=0

h[m] · f[kL+ n−m
]|n=0,...,L−1 = (h ∗ f)[n]|n=kL,...,(k+1)L−1
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11.2 ANALYSE DES FILTRES NUMÉRIQUES

◼Pourquoi filtrer?

◼Réponse fréquentielle

◼Types de filtres

◼Distortions

◼Temps de propagation de groupe

◼Filtres à phase linéaire

8
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Réponse fréquentielle du système LID

Fonctions MatLab
A=abs(B) calcule le module du vecteur B
A=angle(B) calcule la phase du vecteur de données B
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DTFT de la réponse impulsionnelle h = Sh{δ}
H(ejω) = Fd{h}(ω) =

∑
n∈Z

h[n]e−jωn

Sh : f �→ h ∗ f

Réponse à une sinusoïde discrète de fréquence ω ∈ (−π, π]

Sh{ejωn}[n] = H(ejω)ejωn ⇒ H(ejω) = Sh{ejωn}[0]

NB: amplitude et phase sont des fonctions 2π-périodiques de ω.

Réponses en amplitude et en phase

H(ejω) = AH(ω) · ejΦH(ω)

avec

AH(ω) = |H(ejω)| ∈ R
+

ΦH(ω) = arg
(
H(ejω)

) ∈ (−π, π]
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Pourquoi filtrer?
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1) Pour corriger les distorsions analogiques = égalisation

A/Nsystème
LIT

Traitement numérique

Dans les systèmes réels de mesure ou communication: souvent 1) + 2)

3) Pour préaccentuer

Traitement
numérique

N/A

x̃[n] = (h ∗ y)[n] ≈ x[n]

x(t) y(t) y[n]

2) Pour supprimer le “bruit”

signal utile bruit (souvent aléatoire)

f [n] = s[n] + b[n] s̃[n] = (h ∗ f)[n] ≈ s[n]

�
S̃(ejω) = H(ejω)S(ejω) +H(ejω)B(ejω) ≈ S(ejω)
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Exemple: filtrage d’un ECG
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Elimination du 50 Hz
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Types de filtres

ω
π−π

ω
π−π

ω
π−π

ω
π−π
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Passe-bas

Passe-bande

Passe-haut

Passe-tout

Comme pour les filtres analogiques, on classe les filtres en 4 classes

principales, selon le support de leur DTFT

Rappel: On ne trace la réponse fréquentielle d’un filtre numérique (ici son am-

plitude) qu’entre −π et π. D’autre part, la réponse impulsionnelle filtres usuels

étant réelle, leur réponse fréquentielle satisfait la symétrie Hermitienne.
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Distorsions
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Distorsion d’amplitude ou atténuation

Mesure de l’écart relatif (expression en décibels) entre l’amplitude du filtre au centre

de la bande passante ωc et son amplitude pour des fréquences quelconques

AttH(ω) = 20 · log10
(

AH(ω)

AH(ωc)

)
dB

Réponse fréquentielle: H(ejω) = AH(ω)ejΦH(ω)

Distorsion de phase ou temps de propagation de groupe

Rappel: si h[n] caractérise un filtre numérique, alors la phase de la DTFT de hn0
[n] =

h[n− n0] est modifiée linéairement par: ΦHn0
(ω) = ΦH(ω)− ωn0 mod 2π.

Temps de propagation de groupe: TPGh(ω) = − d
dωΦH(ω)

La distortion de phase est alors l’écart de TPGh(ω) par rapport à TPGh(ωc).
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Temps de propagation de groupe
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Exemple: Décalage de n0 avec H(z) = z−n0

zH′(z)
H(z) =

z(−n0)z
−n0−1

z−n0
= −n0 ⇒ TPGH(ω) = n0

Rappel:

z = a+ jb = |z| · ejθ

log(z) = log |z|+ jθ

Im
(
log(z)

)
= Re

(− j log(z)
)
= θ (mod 2π)

Formule différentielle pour le temps de propagation de groupe

TPGh(ω) = −Re
(
ejω

H ′(ejω)
H(ejω)

)
avec H ′(z) =

dH(z)

dz

En effet, Φ′
H(ω) = Im

(
d
dω log

(
H(ejω)

))
= Im

(
H′(ejω)jejω

H(ejω)

)
).

Forme polaire de la réponse fréquentielle

Fd{h}(ω) = H(ejω) = AH(ω)ejΦH(ω)

TPGh(ω) = −dΦH(ω)

dω
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NB: les atténuations et TPG sont des quantités additives par convolution
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Atth1∗h2(ω) = Atth1(ω) + Atth2(ω)

TPGh1∗h2(ω) = TPGh1(ω) + TPGh2(ω)

AH(ω) =
1

|1− z0e−jω|

z0 = 1
2 z0 = 1

2

TPGh(ω) = −Re

(
zH ′(z)
H(z)

∣∣∣∣
z=ejω

)
= Re

(
z0e

−jω

1− z0e−jω

)

TPGmax =
|z0|

1− |z0|

Exemple: H(z) =
1

1− z0z−1
avec z0 = |z0|ejω0 ∈ C
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Filtres à phase linéaire
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Preuve basée sur la forme différentielle du TPG

(ce qui équivaut "moralement” à ΦH(ω) = θ0 −Kω)

Un filtre réel sans distortion de phase, c.-à-d. tel que TPGh(ω) = K (constante),

est forcément à phase linéaire

TPGh(ω) = K ⇔ H(ejω)

H(e−jω)
= ej(2θ0−2Kω)

Si h est un filtre réel avec H(ejω) = AH(ω)ejΦH(ω), alors H(ejω)∗ = H(e−jω) = AH(ω)e−jΦH(ω).

En appliquant les règles de différentiation, on vérifie que

H(e−jω)

2je2KjωH(ejω)
· d

dω

(
e2KjωH(ejω)

H(e−jω)

)
=

ejωH ′(ejω)
2H(ejω)

+
e−jωH ′(e−jω)

2H(e−jω)︸ ︷︷ ︸
Re

(
ejωH′(ejω)

H(ejω)

)
+K

= −TPGH(ω) +K = 0


⇔ d

dω

(
e2KjωH(ejω)

H(e−jω)

)
= 0

Il s’ensuit que
H(ejω)

H(e−jω)
= ej2ΦH(ω) = Const · e−2Kjω, ce qui implique aussi que |Const| = 1.

Donc, il existe θ0 ∈ R tel que 2ΦH(ω) = (2θ0 − 2Kω) mod 2π.
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Filtres à phase “constante”
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Filtres à phase linéaire réalisables

Le filtre réel à phase linéaire est réalisable sous forme rationnelle si
H(ejω)

H(e−jω)
= ±e−jNω

avec N ∈ Z; c.à.d. quand 2θ0 ∈ {0, π} et K = N/2.

Filtres symétriques: h[n] = h[−n], ∀n ∈ Z

H(ejω) = A(ω) avec A(ω) réel, 2π-périodique et t.q. A(ω) = A(−ω) (symétrie Hermitienne)

⇒ H(ejω)

H(e−jω)
= 1; c.à.d. 2θ0 = 0 et K = 0.

Filtres anti-symétriques: h[n] = −h[−n], ∀n ∈ Z

H(ejω) = jB(ω) avec B(ω) réel, 2π-périodique et t.q. B(ω) = −B(−ω)

⇒ H(ejω)

H(e−jω)
= −1; c.à.d. 2θ0 = π et K = 0.
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Filtres réalisables à phase linéaire
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Type 1: ε = +1, N pair

Type 4: ε = −1, N impair

h[N/2] = 0

Type 2: ε = +1, N impair

Type 3: ε = −1, N pair

Condition nécessaire et suffisante pour que H(z) soit réalisable et à phase linéaire

Filtres symétriques à phase linéaire: ε = +1

Filtres anti-symétriques à phase linéaire: ε = −1

H(z) = εz−NH(z−1) avec ε = ej2θ0 ∈ {+1,−1} ⇔ TPGh(ω) = N/2 = K
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11.3 SYNTHÈSE DE FILTRES NUMÉRIQUES

◼Gabarit de filtre

◼Synthèse à partir d'un filtre analogique

◼Echantillonnage de la réponse impulsionnelle

◼Transformation bilinéaire

◼Synthèse directe de filtres numériques

◼Placement des pôles et zéros

◼Critère L2

◼Critère de Tchébychev

20
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Gabarit de filtre

ω
πω p ωa0

2εp

2εa

    bande passante
           

    
bande 

de transition

   
    bande atténuée

       

1
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∣∣H(ejω)
∣∣

Remarque: le gabarit d’un filtre passe-bas est symétrique de celui d’un filtre

passe-haut par rapport à ω = π/2; H(z) passe-bas ⇔ H(−z) passe-haut

Les filtres idéaux n’étant pas réalisables, il faut faire des compromis

Fluctuations dans la bande passante (1± εp)

Zone de transition (largeur ∆ = |ωp − ωa|)
Fluctuations dans la bande bloquante (0± εa)

Exemple de spécifications pour un filtre passe-bas
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Synthèse à partir d’un filtre analogique

Preuve:

22

y(t) = (h ∗ x)(t)
=

(
h ∗

∑
k∈Z

x(kT ) · sinc( ·−kT
T )

)
(t)

=
∑
k∈Z

x(kT ) · (h ∗ sinc( ·−kT
T

)
(t)


⇒ y(nT )︸ ︷︷ ︸

y[n]

=
∑
k∈Z

x(kT )︸ ︷︷ ︸
x[k]

·
∫
R

h(τ)sinc(nT−τ−kT
T )dτ︸ ︷︷ ︸

h̃[n−k]

Exemple: h(t) = e−s0tu(t). Alors h[n] = T · e−s0Tnu[n] avec H(z) = T
1−e−s0T z−1 .

Lorsque les signaux discrets sont obtenus par échantillonnage à la fréquence 1/T de

signaux à temps continu, les filtres discrets peuvent être également issus de filtres à

temps continu selon la formule
(
en notant ĥ(ω) =

∫
R

h(t)e−jωtdt
)

h̃[n] =

∫
R

h(τ)sinc
(

nT−τ
T

)
dτ =

(
h ∗ sinc( ·

T )
)
(nT ) =

1

2π

π/T∫
−π/T

T · ĥ(ω)ejnTωdω

Méthode d’échantillonnage de la réponse impulsionnelle

Si l’on peut faire l’approximation que h(t) est à bande limitée dans [−π/T, π/T ], alors on a

h[n] = T · h(nT ).
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Méthode d’approximation de la réponse fréquentielle
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Les deux formules sont équivalentes is H(ejω) = ĥ(ω/T ) pour |ω| ≤ π.

=
1

2π

π∫
−π

ĥ(ξ/T )ejnξdξ

Donc, une bonne approximation du filtre analogique est une approximation qui

réalise H(ejω) ≈ ĥ(ω/T ) pour ω ∈ [−π, π].

Une solution meilleure que l’approximation de la réponse impulsionnelle est d’approcher

la réponse fréquentielle. Soit

h[n] =
1

2π

∫ π

−π

H(ejω)ejωndω

et h̃[n] =
1

2π

π/T∫
−π/T

T · ĥ(ω)ejnTωdω
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Transformation bilinéaire

24

On souhaite approcher ĥ(ω) à l’aide d’une fonction (2π/T )-périodique H(ejωT ).

Méthode: approcher la fréquence ω elle-même à l’aide d’une fonction (2π/T )-périodique.

Transformation bilinéaire: s = jω z−1 = e−jωT

s =
2

T

1− z−1

1 + z−1

�
ĥ(ω) est une fraction rationnelle en jω et le filtre continu est stable BIBO

Hbilinaire(e
jω) est une fraction rationnelle en ejω et le filtre discret est stable BIBO

La réponse fréquentielle qui approche la transformée de Fourier du filtre est donc donnée par

Hbilinéaire(e
jω) = ĥ

(
2

jT

1− e−jωT

1 + e−jωT

)
Propriété: Conservation de la stabilité

Justification: e±jωT = 1± jωT +O
(
ω2T 2

)
(série de Taylor), d’où l’approximation

e−jωT =
e−jωT/2

ejωT/2
≈ 1− jωT

2

1 + jωT
2

=
−jω + 2

T

jω + 2
T

.

Transformation dans le plan complex: z−1 =
−s+ c

s+ c
⇔ s = c

1− z−1

1 + z−1
avec z = ejωT , s = jω, c = 2

T .

z−1 =
−s+ 2

T

s+ 2
T
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approximation bilinéaire
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La transformation bilinéaire permet de recycler toutes les classes de filtres
analogiques (Butterworth, Tchebychev etc…) en des filtres numériques.

ĥ(ω)

Approximations du filtre: h(t) = e−tu(t)
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Synthèse directe de filtres numériques

26

Le traiteur de signal moderne est confronté le plus fréquemment à des signaux
numériques purs, sans nécessité de recourir à l'équivalence analogique.

On peut ainsi forcer le filtre à avoir un gain minimal—ou au contraire,
maximal—pour certaines valeurs de la fréquence ω (placement de pôles et de zéros).  

Dans le cas de la synthèse de filtres FIR, on peut simplement tronquer le filtre
idéal ou plus généralement, le multiplier par une fenêtre à support fini.  
On peut aussi minimiser le carré de l'erreur moyenne entre le filtre et son gabarit  
(critère L2); ou bien minimiser le maximum de l'erreur moyenne entre le filtre et son
gabarit (critère de Tchébychev).

Selon le sens que l’on donne au verbe “minimiser”, plusieurs techniques existent alors

pour synthétiser des filtres, le but étant toujours

de minimiser l’amplitude de la réponse dans la bande atténuée

de limiter la distortion dans la bande passante

de rendre la bande de transition la plus étroite possible
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Synthèse par placement des pôles et zéros
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ω
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zéro → effet attractif

pôle → effet répulsif

On obtient la réponse fréquentielle en évaluant H(z) pour z = ejω; son amplitude est

donnée par

H(ejω) = γ ·

M∏
m=1

(
distance de z0,m à ejω

)
N∏

n=1

(
distance de zp,n à ejω

)

Comme dans le cas analogique, les zéros et les pôles d’un filtre RII permettent de

spécifier la bande passante et la bande atténuée. Ainsi, soit la fonction de transfert

H(z) = γ ·

M∏
m=1

(1− z0,mz−1)

N∏
n=1

(1− zp,nz−1)
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En résumé

filtre à RII réelle ⇒ pôles et zéros complexes par paires conjuguées

filtre causal-stable ⇒ pôles à l’intérieur du cercle unite

filtre à phase linéaire (FIR) ⇒ zéros par paires réciproques

P (z) = ±z−NP (z−1) : P (zk) = 0 ⇒ P (z−1
k ) = 0

L’extremum du TPG d’un filtre élémentaire 1 − zkz
−1 est atteint pour ωk = φk et on a

TPG(1−zkz−1)(ωk) = − |zk|
1−|zk| < 0 si |zk| < 1. Donc

quand |zp,n| < 1 (filtre causal-stable), le TPG maximum de 1
1−zp,nz−1 est positif

→ retard de groupe

quand |z0,m| < 1, le TPG maximum de 1− z0,mz−1 est négatif

→ contrebalancer le retard de groupe dû aux pôles

Pour ce qui est du TPG du filtre, on a (additivité des TPG)

TPGH(ω) =

M∑
m=1

TPG(1−z0,mz−1)(ω)−
N∑

n=1

TPG(1−zp,nz−1)(ω)

où TPG(1−zkz−1)(ω) = −Re
(

zke
−jω

1−zke−jω

)
avec zk = |zk|ejφk
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Filtres passe-tout

29

Vérification: La distance de 1/z∗0,m à ejω peut s’écrire comme

∣∣ejω − 1

z∗0,m

∣∣ = ∣∣e−jω − 1

z0,m

∣∣ = ∣∣ ( e−jω

z0,m

)
(z0,m − ejω)

∣∣
=

1

|z0,m|
∣∣ejω − z0,m

∣∣ ∝ distance de z0,m à ejω

Caractérisation équivalente: H(z) est un filtre passe-tout si est seulement si à tout zéro

z0,m correspond un pôle zp,m = 1/z∗0,m et vice versa.

Preuve: posons H(z) = P (z)/Q(z), alors la condition passe-tout équivaut à P (z)P ∗(z−1) ∝ Q(z)Q∗(z−1).

Comme Q(z) ne divise pas (est premier avec) P (z), on en déduit que Q(z) = γzNP ∗(z−1).

Pour que la réponse d’amplitude d’un filtre H(ejω) soit constante, il faut que la distortion

d’amplitude des zéros compense exactement celle des pôles; soit |H(ejω)|2 = H(z)H∗(z−1)|z=ejω

= γ2 = Const. Un tel filtre passe-tout est nécessairement de la forme

H(z) = γzN
P (z)

P ∗(z−1)

où P (z) est un polynôme en z−1, et P ∗(z) est le polynôme obtenu en prenant le complexe

conjugué des coefficients de P (z).
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Synthèse de filtres RIF—Critère L2
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Fonction Matlab
H=firls(N,F,A)

→ H=filtre symétrique de degré N (support N+1)
F=bandes de fréquences normalisée (début-fin);
    e.g.: = 0ω p ωa π[ ] π

A=amplitude dans les bandes
    e.g.: = 1 1 0 0[ ]
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Plus ce nombre est proche de 0, plus le filtre H est proche du filtre idéal. Par contre,

certains points fréquentiels peuvent ne pas tendre vers zéro (effet de Gibbs). On

limite ce phénomène en autorisant une plus grande bande de transition.

L’avantage de la mesure L2 est que le minimum est unique, et solution d’un système
linéaire d’équations. Exemple de résultat:

∣ ∣ H(e
jω
)∣ ∣

On choisit la mesure (quadratique) suivante

ξ(H) =

∫
bande passante

∣∣1−H(ejω)
∣∣2dω +

∫
bande atténuée

∣∣0−H(ejω)
∣∣2dω
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Synthèse de filtres RIF—Critère de Tchébychev

Fonction Matlab
H=remez(N,F,A)

→ H=filtre symétrique de degré N (support N+1)
F=bandes de fréquences normalisée (début-fin);
    e.g.: = 0ω p ωa π[ ] π

A=amplitude dans les bandes
    e.g.: = 1 1 0 0[ ]

 −π −π/2  0   π/2  π  

0.2

0.4

0.6

0.8

1

filtre
 symétrique, 21 coefficients

fréquence radiale ω 31

∣ ∣ H(e
jω
)∣ ∣

Plus ce nombre est proche de 0, plus le filtre est proche du filtre idéal. À la différence

du critère L2, il n’y a pas d’effet de Gibbs.

Un algorithme itératif très efficace dû à Parks et McLellan permet de calculer le filtre

minimisant ce critère: l’algorithme d’échange de Remez. Le résultat est un filtre à

ondulation uniforme (equiripple). Exemple de résultat:

On choisit la mesure (Tchébychev ou minimax) suivante

ξ(H) = max

(
sup

bande passante

∣∣1−H(ejω)
∣∣, sup

bande atténuée

∣∣0−H(ejω)
∣∣)


